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1. POLY:-;OMIAL I~TERPOLATIO:-; 1:-; [R"

We will denote the space of polynomials in n real variables byJl. .:?~i c ,0/
will be those of total degree at most d. Now suppose that E c W is some
set. Let l( E) := {p E3' Ip is identically zero on E}. Then, the polynomials
of degree d, when restricted to E, form a certain vector space, 'o/d(E) say,
which we may identify with the factor space .:1Jd/I(E). For instance if E is the
unit circle in [R2, then ,Jld(E) is the space of trigonometric polynomials of
degree d. Of course E = Hn

, or even if E contains some non-empty open set,
gives all polynomials of degree d.

Now 3'd(E) has a dimension which we denote by N d(E). The polynomial
interpolation problem is then, given Nd(E) points x~ E E and l(AE) func
tion values j~, to find apE ,:1Jd (E) such that p(x~) =j~, all ':1.. We will say
that X := {x l' ... , X.vd(l:.j} c E is unisolvent if the interpolation problem has
a unique solution for all given sets of function values.

In studying unisolvency it is useful to introduce the (generalized)
Vandermonde determinant. Pick a basis {Q1' ..., Q.vJ1/:.1} for 9,,(E). Then for
X as above,

VDM~.(X) := det[Q~(xil)J1 ~ ,.il,,; SJ(/:.)·
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Although this determinant does depend on the basis which is used, it is not
difficult to see that the determinants for two different bases differ by a
factor of the determinant of the basis transition matrix. Thus for questions
of unisolvency, the choice of basis is not important.

Now, it is also not difficult to see that X is unisolvent iff VDM~(X) # O.
Equivalently, X is unisolvent iff there is no p E .OJd(E) such that p(x) = 0,
VXEX. In one variable, for E= [a, b], it is well known that Xis unisolvent
as long as the points are distinct. However, these questions are much more
difficult in several variables. It is the purpose of this note to give some con
figurations of points for which it is not too difficult to show unisolvency.
These are described in Section 3. In Section 2, as a preliminary, we
discuss the special case when E is an algebraic variety. In Section 4 we
discuss the computation of Lagrange polynomials and the corresponding
Vandermonde determinants. An illustrative example in 1R 2 is presented in
Section 5. These results generalize some of the results of Chung and Yao
[3] and Gasca and Maeztu [4], where the authors consider Lagrange
interpolation at points constrained to lie on hyperplanes. Further, Chui
and Lai [2] give a formula for the Vandermonde determinant in this
special case. In [4], the more general problem of Hermite interpolation is
also treated but this will not be considered here. Some of these results
appeared in a less general form in [I].

2. THE CASE OF E AN ALGEBRAIC VARIETY

Suppose now that E is a real algebraic variety such that its ideal, I(E),
is principal; i.e., generated by a single element P say. Of course, we assume
that E is non-empty. In this case we may actually compute the dimensions
NAE).

Proof By our assumptions .OJd(E) = &jl(E) = ,OJd/(P). Hence p'" q in
&d(E) iff p-q=rP for some rE.qlJd-dcg(P)' It is not difficult to see that this
implies that Nd(E)=dim(2i'd)-dim(·q.i'd_deg(P»)' I

Now suppose that Xc E is a unisolvent set of Nd(E) points. In par
ticular, if PE2i'd(E) is such that p(x)=O, VXEX, then p=O (in .OJd(E)).
More generally, if p E ,gild is also such that p(x) = 0, VX E X, then p == 0 on E;
i.e., p E I(E) and so p = rP for some r E ,qlJ. We will have occasion to make
use of these simple properties of unisolvent sets.
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3. CONFIGURAnONS OF POINTS L YIl'G ON A COLLECTION OF

ALGEBRAIC VARIETIES
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Suppose that VI' V2 , 00" Vm are algebraic varieties such that I( V;) is
generated by Pi E /J}Jd

i
' We will also require that the Vi' pairwise, share no

common components, or in other words, the Pi are pairwise relatively
prime. We abbreviate Nd(VJ to N d and Nd(iR") to Nd. Our goal is to
distribute N d points over these m varieties in such a way as to produce a
unisolvent set. However, the number of points which may be placed on
each variety is limited.

LEMMA 3.1. Suppose that Xc H" is a set of' N d points. If greater than N:J

of'these lie on Vi' then VDM~n(X) = o.

Proof We will show that then there is apE .?I'd such that p(x) = 0,
VXEX. By Lemma 2.1, Nd=Nd-Nd d, Hence there would then be
strictly fewer than N d _ d, points not on Vi' Thus there would exist a
q E'~d- di which is zero at all the points ofT Vi' Then p := P,q is zero at all
points of X. I

The numbers of points that we do place on each variety is based on the
following simple calculation.

LEMMA 3.2. Suppose that d t + ... + dm 1< d but thaI d l + ... +
dm ~d. Then

if dt+ .. ·+dm=d

if dt+· .. +dm>d.

Proof By Lemma 2.1, N ~+N~_dl + ... + N;'_dl__ d
m

,= {Nd-N d dl}
+ {Nd d, - Nd d, d2} + ... + {Nd d,- _ - dm I - Nd- d, - - - dm }. If d I +
... + dm= d, this collapses to N d - No = Nd - 1, and if d j + ... + dm> d to

just Nd · I
We are now ready to describe the configurations of points which form

the content of this note.

Configuration. Suppose that VI' '00' Vm are algebraic varieties as
described above such that d l + ... + dm_ 1 < d but d l + ... + dm~ d. Set
Si = d - d 1 - ... - di I and let Xi c Vi be a set of N:, distinct points,
i = 1, 00" m. Further, suppose that the Xi are pairwise disjoint. Now, if
d 1 + ... +dm>d set X=X I u ... uXm and if d 1 + ... +dm=d, set
X = XI U ... u XmU {a} where a E [R" is not on any of the Vi'
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By Lemma 3.2, card(X) = N d and it is this set of points, X, which we
consider. As it turns out, the unisolvency of X depends only on the
(possibly) simpler problems of the unisolvency of the Xi'

THEOREM 3.3. IjVDM'?,(XJ#O, i=l, ... ,m then VDM~n(X)#O.

Proof: Suppose PI E.9'd is such that Pl(X)=O, VXEX. In particular,
PI(X)=O, VXEX I· But then, as VDM~I(Xd#O by hypothesis, P1E/(Vd
so that PI =P2PI for some P2E,UfJd-dl. Then P2(X)=O, 'tfxEX2, so that
P2 E /( V2) and hence P2 = P3 P2 for some P3 E ,9d dl d2' Continuing in
this manner we see that PI = cP IP2··· Pm for some constant c. But
if d l + ... + dm > d, as deg(pd = d, this is impossible unless c = 0. If
d l + ... +dm=d and c#O, PI(a)=O implies that at least one of
PI (a), .." Pm(a) is zero, contradicting the choice of a. Hence PI =°and the
result follows. I

In other words, X is unisolvent for interpolation by polynomials of
degree d if each Xi is unisolvent for interpolation by polynomials of degree
Si on the variety Vi'

4. LAGRANGE POLYNOMIALS AND VAl'DERMO~DE DETERMIJI'ANTS

If Xc;Rn is a unisolvent set of Nd points, then for each x E X we may
form the Lagrange polynomial, l~ E 2i'd' defined by

lAy) = <5 x, y 'tfyEX.

Here <5 is the Kroneker delta. More generally, if E c IRn is some set and
Xc E is unisolvent for interpolation by .?I'd(E), then again for each x E X we
define the Lagrange polynomial Lx E 9AE) by

LAy) = <5 x• y VyEX.

The Lagrange polynomials are fundamental to the study of polynomial
interpolation and much of the one-dimensional theory is based on an
analysis of their properties. In several variables explicit formulas are only
available for some simple cases, but as it turns out, there are recursive
formulas for the points in our configurations.

THEOREM 4.1. Suppose that Xc IR/n is a set of N d points in the configura
tion of Section 3 which satisfies the unisolvency hypotheses of Theorem 3.3.
For x E Xi let Lx E .''1',,( V;) be its associated Lagrange polynomial and Lx E ,0/'.,
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he such that Lxi v, = L,. Then for x E Xi' the Lagrange polynomial I, is given
hy

1
'"

Qx - L L QAy)/"

l,~ Q,-j~i' '~' QAy)I,.-QAa)l"
J=lTl Y€-:Xj

where
i-I

Qx=Lxx TI {P,iP,(x)}.
,~ 1

In case d 1 + ... +d",=d,

la= TI {P/Pj(a)}.
j~ ,

Proof First note that if x E Xi with i> 1, then lAy) = 0, Ify E XI' and so
Ix E I( VIl. Therefore, Ix= q 1PI for some q j E ,o/'d-A' Similarly, if i> 2, I, is
also zero on X 2 so that ql(Y)=O, VyEX2 . Hence q j EI(V2 ) so that
q 1 = q 2 P 2 for some q2 E &'d dl d,' Continuing in this manner we see that
Ix Iv == 0 for 1~ j < i.

Next consider Qx' As Lx E :!J'<" Qx E [~d' By construction Qxly) = 0,
lfyEXj , 1 ~j<i. Moreover, if YEX i , y#x, Lxly)=O, and so QAy)=O.
Clearly QAx)= 1. Hence Qx has the correct values of Ix on Xj' I ~j~i. It
needs only be adjusted to have zero values at Xj' j> i.

Now Lj: i- 1 LYd
j
QAy)/" E~" is zero on VI' ..., V, by the first remark,

and interpolates Qx at Xi + , U ... u X",. Thus subtracting this expression
from Qx has the desired effect. If d, + .. -+ d", = d, then in addition QAa)/"
must also be subtracted. The formula for I" is easily verified. I

The Vandermonde determinant is also of some interest. For the
configurations of points considered here, it turns out that this determinant
factors into the products of the smaller determinants belonging to X"

THEOREM 4.2. Suppose that Xc IRn is a set ofpoint .I' in the configuration
of Section 3. Then

VDM~n(X)=C-K'lIj L~x,~D: P,(X)} VDM~',,(X,),

where C # 0 is a constant independent of X and

640-64 )-J
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Proof Suppose first that d l + ... + dm > d. Now the proof is much
facilitated by the choice of a convenient basis for 9d • So suppose that
B i c <~i is a set of N;'j polynomials such that B i i v, is a basis for :~, (VJ Set

B=U;n~I Bi , where B,={TIj:: P,}Bi . We claim that B is a basis for 9 d .

Clearly Be &I'd and by Lemma 3.2, card(B) = N d' Hence it suffices to show
that B is a linearly indcpendent set. But suppose that some lincar combina
tion Q := L PE H ':J. p P == O. In particular, QIVI = O. But then, as for i> 1, each

element of Bi has a factor of PI' L p Eli! rtp P= 0 on VI' By our choice of B I

as a basis, rtp = 0, 'rip E BI' Proceeding in a similar manner we see that
':J.p = 0, 'rip E B2 , etc. Hence all coefficients are 0 and B is indeed a basis.

Now form the Vandermonde matrix in the following block form. The
first N:

I
rows are all the basis polynomials evaluated at the points of Xl'

the next N;2 rows are all the basis polynomials evaluated at the points of
X2 , etc. Similarly, the first N:, columns are the polynomials in Bl evaluated
at all the points, the next N;2 columns are those in B2 evaluated at all the
points, etc. By construction, the polynomials in B, are zero on X)' 1 :::;; j < i,
and so this matrix (Fig. 1) is actually block lower triangular and the deter
minant is the product of the determinants of the diagonal blocks.

Now consider the ith diagonal block. It is the matrix formed by
evaluating the polynomials of Bi at the points of Xi' But recall that
Bi = {TIj::::: Pj}B" where B[ restricts to a basis for '~j(VJ Thus the row in
this block belonging to x E Xi has the common factor, TIj:: Pj(x) which
may be factored out of the determinant. Hence the determinant of the ith
block is {TIxEX

i
TIJ:: P,(x)} VDM~i(Xi)' from which the formula follows.

The case d l + ... + tim = d is similar and is omitted here. I
In an interesting special case we obtain a formula for the determinant

highly reminiscent of the well-known one variable formula. Indeed, this
case reduces to that formula when n = 1.

o 0
f---j---- --_. --._--

XIll { l

I
I
I

FIGL:RE I

o
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COROLLARY 4.3. Suppose that Xc IR" is a set of points in the configura
tion of Section 3, hut that each of the varieties Vi are actually different level
sets of a fixed po(ynomial. That is, there is a P such that Pi = P - c, for
distinct constants Ci. Then

where ColO is a constant independent of X and

K~{~ (P(a)-c,)
i= 1

il d 1 + ... + d", > d

Remark. C is independent of X but only under the condition that the
V, are fixed. C is dependent on the chosen basis of .'?I'd, and so in this last
case, for instance, C does depend on the ci . It is, however, guaranteed to
be non-zero.

5. A" ILLCSTRAT'VE EXAMPLE '" [R2

Let P(x" X2) = X7 + x~ and consider Pi := P - R~ with distinct Ri > O. V,
is then the circle of radius Ri , centred at the origin. In this case
d 1 = d2 = ... = dm = 2 so that we must have m = l(d + 1)/2j. It is easily
checked that d 1 + ... + dm > d when d is odd and equals d when d is even.
In the even degree case we take our extra point a:= (0,0). Then
Si = d - 2(i - 1) and as, in two variables, N d = (d + 2)(d + 1)/2, the number
of points placed on Vi is

N:., = N" - N si - 2 = 2s, + 1.

Y1( Vi) is the familiar space of trigonometric polynomials of degree k and
as is well known, any 2k + 1 distinct points on the circle are unisoivent.
Hence letting Xi consist of any 2si+ 1 distinct points on Vi (with one
at the origin if d is even) always provides a unisolvent set. We begin by
illustrating the calculation of the Lagrange polynomials. For simplicity we
take d= 2 and R, = 1. Then m = I, N 2 = 6, and.l"l = 2(2) + 1 = 5. Hence five
points are placed on the unit circle and the sixth at the origin. Again, to
simplify the calculation, suppose that the five on the unit circle are equally
spaced with one at (1,0). We see easily that I(o.o)(x" x 2 )= l-xf-x~ and
calculate, for example, I( 1.0) according to the formula of Theorem 4.1.



278 L. BOS

Restricted to the unit circle, we have a trigonometric interpolation problem
and it is easily seen that

L(1,opn = H! + cos(8) + cos(28)}

so that

for instance. Hence, in this case,

as well, and

I( I,O)(X 1 , X2) = Q(I,Oj(X 1, X2) - Q(I,O)(O, 0) I(O,Oj(X1 , X2)

=H2xl+3x~-xn·

One form of the Vandermonde determinant may be immediately com
puted from Corollary 4.3. A curious consequence of this formula is that
V~n(X) does not depend on the orientation of the points on Xi' This is due
to the fact that the trigonometric Vandermondian is invariant under
rotations.

Now in some circumstances it is useful to know precisely how the deter
minant depends on the points, or in other words, to know how the C
depends on the radii. In order to see this we must compute the determinant
using a basis for ePd which is independent of the Pi' It turns out that there
is such an independent basis which is still convenient for the computation
of the determinant. We give the construction for the d odd case. The d even
case is only slightly different.

First let ~k:= {I, Re(z), Im(z), Re(z2), Im(z2), ..., Im(zk)}, where z:=
x,+ix2 and (temporarily) i 2= -1. Then on the circle, x~+X~=R2, fJdk
restricts to {I, R cos(0), R sin(8), ... , Rk sin(k8)} which is a basis for the
trigonometric polynomials. Note also that fAk _ 1 C f!Jk> k = 1,2, .... The
existence of such "universal" bases is not particularly unusual.

LEMMA 5.1. Let PEf!J with deg(P)~l andc 1 ,c2EIR. Suppose that for
k = 0, 1, ..., d, ~k C f!Jk is such that .e:JIk restricts to a basis for :!Jk/(P - c1) and
that ~k _1 c:J9k> k= 1, ..., d. Then ·'1bd also restricts to a basis for ePJ(P-c2 ).

Proof As the dimensions of .000d/(P - c 1 ) and &d/(P - c2) are the same
we need only show linear independence of f!Jd in f!JJ(P - C2)' Hence, sup
pose that Q Espan(36d) is such thatQ "" 0 in &d/(P - c2); i.e., Q E (P - c2).
Then Q=(P-c2)r for some rE&d-deSIP)' so that Q=(P-cdr+
(c 1 - c2)r. Thus, Q"" (c 1 - c2)r in :!Jd/(P - c 1 ). But deg(r) = d - deg(P) and
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so Q E fJ4d _ deg(?) and hence deg( Q) = d - deg(P). By repeating the
argument, deg( Q) = d - 2 deg(P) and eventually we arrive at a contra
diction. I

Now take B; := ,JBs of above, i = 1, 00" m. Then B; i v is a basis for 2P" (V,),
Let D;:= pi ···1 B i and set D := U7~ 1 D;. In the proof of Theorem 4.2 we
made use of the basis B = U~cc 1 Bi , where B; = {n; ~: Pi} Bi . We claim that
D is also a basis for .'?Id and, moreover, the Vandermonde detenninants
computed using Band D are exactly the same. This follows from the facl
that the transition matrix from B to D has determinant + 1. Again, a morc
general result is available.

LEMMA 5.2. Suppose that B;c//}J, i= 1, 00" m are such that B1 ::::J B2 ::::J •••

::::J Bm and that P is some polynomial. For c l' '00' C m E IH consider the tlVO sets
B:= U'" {n' 1 (P - c)} Band D:= U'." pi-' JB. Then the transition

1-=" 1 1'=- 1 J J 1·- 1 1

matrix from B to D has determinant + 1.

Proof. Set B;:={n;~:(p-cj)}B; and Di:=pi lBi' Organize the
transition matrix into the block structure shown in Fig. 2. Since B1 = DI'

the first column is just [I I0101 ... 10]'. Now if p E B2 , then p = (P - cIlq
for some q E B2 • But then Pq E D2 and as B2 c B 1 = jj l' P can be expressed
as a linear combination of the corresponding element in D2 (i.e., Pq) and
elements of D1 • Thus the second column is just [* II I0: ... 10]'. Con
tinuing in this manner, it is not difficult to see that the matrix is block
upper triangular with identities on the diagonal. Hence the determinant
is + 1. I

Using the bases Band D are therefore equivalent and so from Theorem
4.2,

11
1

112 11m
~~~'-.. --"'-::\~+ 1-+r-----t-----;·---·--l- I
i : : !

~---i-----t-- ---1-----_ r, ' : I
II l' I I

m i !!
FIGl:RL 2



280 L. BOS

where VDM'?, (Xj ) is computed using the basis PAs, of above and C IS

completely independent of X. First note that we may simplify

fl In' P;(x)={ld (Ri_ R})}2.',-t1
X~ x,; ~ 1 ; - I

Second, if we write X j = {RI(cos(8J, sin(8j )) };~: I in trigonometric form,

R j cos(Od

R j COS({}2)

R~' sin(sj8 1)

RJi sin(sj8 2 )

which is just R;(1-t2~ ... -'S,} times an ordinary tirgonometric Vander
mondian of degree Sj' Hence setting Xj := {Ol' .. " ()2s,-t I}, we see that

VDM~n(X)=C-X\RJ'(S"I){ij (Ri-Rnf,,-tl VDM~;+x;_,(X;),

where C is completely independent of X.
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